
Three-Dimensional Small-

Disturbance Solutions

CHAPTER 8

Disturbance Solutions
Chapter 4:

1. The small-disturbance problem for a wing was established.

2. The problem is separated into the solution of two linear sub-problems,

namely the thickness and lifting problems.

Chapter 5:

The thickness and lifting problems for airfoil was solved. These solutions were

added to yield the complete small-disturbance solution for the flow past a thinadded to yield the complete small-disturbance solution for the flow past a thin

airfoil.

Chapter 8:

In this chapter, 3D small-disturbance solutions will be derived for some simple

cases such as the large aspect ratio wing, the slender pointed wing, and the

slender cylindrical body.
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دانشكده مهندسي هوافضا، دانشگاه   -حامد عليصادقي 

خواجه نصيرالدين طوسي

8.1 Finite Wing: The Lifting Line Model

Difficulty of obtaining an analytic

solution from the integral equations

Formolating 3D lifting

wing problem (Chapter 4)

Approximating the lifting properties 

of a wing by a single lifting line

(closed-form solution)

considerable 

simplifications
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Capturing the basic

features of 3D lifting flows

I. Increasing in induced drag 

with decreasing aspect ratio

II. Reduction of lift slope



Definition of the Problem

- Lifting, thin, finite wing

- Moving at a constant speed

- Small angle of attack

Laplace’s equation for the perturbation potential:

8.1 Finite Wing: The Lifting Line Model

B.C. On wing solid surface approximated at z = 0:

Selecting a vortex distribution for modeling the lifting surface.

The unknown vortex distribution γx (x, y) and γy (x, y) is placed on the wing’s projected

area at the z = 0 plane.area at the z = 0 plane.

Satisfying Kutta condition at T.E. for a proper & unique solution for vortex distribution:

Vortex lines do not begin or end in a fluid:
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The Lifting-Line Model

• The chordwise circulation, at any spanwise station, is replaced by a single

concentrated vortex.

• These local vortices of circulation Γ(y) will be placed along a single spanwise line.

• This vortex line will be placed at the wing’s quarter-chord (c/4) line along the span,

−b/2 < y < b/2 (Based on results of section 5.5 for 2D lumped-vortex element).

8.1 Finite Wing: The Lifting Line Model

−b/2 < y < b/2 (Based on results of section 5.5 for 2D lumped-vortex element).

• Trailing vortices must be shed into the flow to create a wake such that there will

be no force acting on these free vortices.

The most basic element that will fit these

requirements will have the shape of a horseshoe

vortex , which will have constant bound vorticity

Γ along its c/4 line, will turn backward at the wing
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Γ along its c/4 line, will turn backward at the wing

tips and will continue far behind the wing, and

eventually will be closed by the starting vortex. It

is assumed here that the flow is steady and

therefore the starting vortex is far downstream

and its influence can be neglected.



A more refined model of the finite wing was first proposed by the German scientist

Ludwig Prandtl during World War 1 and it uses a large number of such spanwise

horseshoe vortices.

8.1 Finite Wing: The Lifting Line Model

The straight bound vortex Γ(y) in this case is placed along the y axis and at each

spanwise station, L.E. is one-quarter chord ahead of this line.
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For the case of the flat lifting surface, where ∂η/∂x = 0. The equation now simply states 

B.C. of Eq. (8.2):

The normal velocity components induced by the wing (w ) & wake vortices (w ).

8.1 Finite Wing: The Lifting Line Model

OR

The normal velocity components induced by the wing (wb) & wake vortices (wi).

The velocity component wb induced by the lifting

line on the section with a chord c(y) can be

estimated by using the lumped-vortex model

with the downwash calculated at the collocation

point located at the 3/4 chord.

A typical horseshoe vortex with strength 

ΔΓ(y ) = −(dΓ(y ) / dy) dy
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ΔΓ(y0) = −(dΓ(y0) / dy) dy0



For a wing of large aspect ratio, we can neglect (c/2)2 in the square root terms to get

The result for the complete lifting line (evaluated at y) is obtained by summing the 

8.1 Finite Wing: The Lifting Line Model

The result for the complete lifting line (evaluated at y) is obtained by summing the 

results for all the horseshoe vortices

Note: this is identical to the result obtained by 

applying a locally two-dimensional lumped-

vortex model at each spanwise station

The wake is constructed from semi-infinite

vortex lines with the strength of (dΓ/dy)dy
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The right-hand-side wake vortex line is located at a spanwise location y0 and the 

downwash induced by this vortex at the collocation point (c/2, y) is given by the result 

for a semi-infinite vortex line from Eq. (2.71).

8.1 Finite Wing: The Lifting Line Model

Since for a large aspect ratio wing β1 ≈ π/2, β2 ≈ π

The normal velocity component induced by the trailing vortices of the wing becomes
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Exactly one half of the velocity induced by 

an infinite (2D) vortex of strength ∆Γ(y0)



Assuming that the wing aspect ratio is large (b/c(y)>>1) has allowed us to treat a 

spanwise station as a 2D section & to transfer the B.C. to the local 3/4 chord.

8.1 Finite Wing: The Lifting Line Model

Dividing by Q
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Dividing by Q∞

The Prandtl lifting-line integrodifferential equation for the 

spanwise load distribution Γ(y)

8.1 Finite Wing: The Lifting Line Model

can be viewed as a 

Induced downwash angle is (note that w is positive in the positive z direction):

can be viewed as a 

combination of the angles

Rearranging Eq. (8.12):

In the case of the finite wing the effective AOA of a wing section αe is smaller than the 

actual geometric AOA α by αi, which is a result of the downwash induced by the wake.
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It is possible to generalize the result of this equation by assuming that the 2D section

has a local lift slope of m0 and its local effective AOA is αe. Now, if camber effects are 

to be accounted for too, then this angle is measured from the zero-lift angle of the 

section, such that:

8.1 Finite Wing: The Lifting Line Model

A more general form of Eq. (8.11a) that allows for section camber & wing twist α(y) is:

Eq. (8.12a) becomes

αL0 is the angle of zero lift due to the section
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• local angle of attack relative to Q∞

• αL0(y) is the airfoil section zero-lift angle

Known 

Geometrical 

quantities

Γ(y) is unknown

+
wing tips pressure 

difference or lift = zero

To obtain the aerodynamic forces, the 2D Kutta–Joukowski theorem will be applied (in 

the y = const. plane). 

Because of the wake-induced velocity, the free-stream vector will be rotated by α (y)

8.1 Finite Wing: The Aerodynamic Loads

Solution of Eq. (8.16)
Spanwise bound circulation 

distribution Γ(y)

Because of the wake-induced velocity, the free-stream vector will be rotated by αi (y)

This angle can be calculated for a known Γ(y) by using Eqs. (8.10) and (8.13):

α is small
cos αi ≈ 1 

The lift of the wing is given by an integration

of the local two-dimensional lift (Eq. 3.113)
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αi is small
i

sin αi ≈ αi



The drag force, which is created by turning the 2D lift vector by the wake-induced flow

8.1 Finite Wing: The Aerodynamic Loads

induced drag

Eq. (8.20) can be rewritten in terms of the wake-induced downwash wi

induced drag

induced by the trailing vortices

The total drag D of a wing includes the induced drag Di and the viscous drag D0
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The spanwise circulation distribution Γ(y) for a given planform shape can be obtained 

by solving Eq. (8.16)

8.1 Finite Wing: The Elliptic Lift Distribution

The proposed distribution of Γ(y):

Elliptic distribution 

of the circulation

downwash wi becomes 

constant along the wing span

minimum 

induced drag
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substituting into Eq. (8.16)

the constant  Γmax can be evaluated



8.1 Finite Wing: The Elliptic Lift Distribution

Eq. (8.21)
differentiating 

Substituting 

into Eq. (8.10)

downwash
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Note that when y = y0, this integral is singular and therefore 

must be evaluated based on Cauchy’s principal value

Using Glauert’s integral (Eq. (5.22)) by the transformation

8.1 Finite Wing: The Elliptic Lift Distribution

at the wingtips

Eq. (8.21) 

reduce to

Substituting Eq. 

(8.23) into Eq. (8.22)

using the 

16

using the 

Glauert integral

In elliptic distribution of the 

circulation, the downwash 

wi becomes constant along 

the wing span



Another feature of the elliptic distribution is that the spanwise integral is simply half

the area of an ellipse (with semi-axes Γmax and b/2)

8.1 Finite Wing: The Elliptic Lift Distribution

Consequently, the lift and the drag of the wing can be evaluated as:
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Substituting the spanwise downwash, Eq. (8.24) & the elliptic circulation distribution, 

Eq. (8.21) into Eq. (8.16):

8.1 Finite Wing: The Elliptic Lift Distribution

If the chord c(y) has an elliptic form such as

the relation between the local chord c(y) & the local AOA α(y) for 

the wing with the elliptic circulation distribution

root chord

varied for diffrent airfoil 

shape palnform
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root chord

Substituting Eq. 

(8.31) into Eq. (8.30)

varied for twisted wing

shape palnform



For an elliptic planform with constant airfoil shape, all terms but α(y) in this equation 

are constant, and therefore this wing with an elliptic planformand load distribution is 

untwisted (α(y) = α = const.). The value of Γmax is then:

8.1 Finite Wing: The Elliptic Lift Distribution

area of elliptic wing 

wing aspect ratio 

using m0=2π

19

3D wing lift slope

The 3D wing lift slope becomes less as the wing span becomes smaller due to the 

induced downwash.

8.1 Finite Wing: The Elliptic Lift Distribution

for a wing with given αL0 the effective AOA is 

reduced by αi

For finite span wings, more incidence is 

needed to achieve the same CL as AR decreases.

The induced drag coefficient is obtained by substituting Eq. (8.35) into Eq. (8.29):

As AR increases the induced drag becomes smaller.
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The induced drag for the finite elliptic wing will increase with a rate of CL
2

8.1 Finite Wing: The Elliptic Lift Distribution

The lift slope of a 2D wing is the largest (2π) and as the wing span becomes smaller CLα

decreases too.
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Lift polar for an elliptic wingVariation of lift coefficient slope versus aspect 

ratio for thin elliptic wings Eq. (8.36)

The spanwise loading L'(y) (lift per unit span) of the elliptic wing is obtained by using

the Kutta–Joukowski theorem:

8.1 Finite Wing: The Elliptic Lift Distribution

Chord and load distribution for a thin

elliptic wing. Note that the induced

downwash (wi) is constant and combined

with the downwash of the bound vortex

(wb) is equal to the free-stream upwash

(Q∞α), resulting in zero velocity normal

to the wing surface.
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Note: that it is possible to have elliptic

loading with other than an elliptic

planform, but in that case, local twist or

camber needs to be adjusted so that wi

will remain constant.



The section lift coefficient Cl is defined by using the local chord from Eq. (8.31):

Thus, for elliptic wing, both section lift coefficient & wing lift coefficient are the same.

8.1 Finite Wing: The Elliptic Lift Distribution

Thus, for elliptic wing, both section lift coefficient & wing lift coefficient are the same.

Similarly, the section induced drag coefficient is:

The strength of the circulation in the wake is

simply the spanwise derivative of Γ(y):simply the spanwise derivative of Γ(y):

near the wingtips, where |Γ(y)/dy| is the largest,

the wake vortex will be the strongest.
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Describing the unknown distribution in terms of a trigonometric expansion for more 

general solution for the spanwise circulation Γ(y)

8.1 Finite Wing: General Spanwise Circulation Distribution

All terms of Fourier expansion fulfill Eq. (8.17) at the wingtips:
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Sine series representation of symmetric spanwise 

circulation distribution Γ(ϑ), n =1, 3, 5.



Substituting Γ(θ) and dΓ(θ)/dy into Eq. (8.16)

8.1 Finite Wing: General Spanwise Circulation Distribution
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Using Glauert’s integral 

for the second term 

8.1 Finite Wing: General Spanwise Circulation Distribution

Comparing with Eq. (8.16)−αe
−αi
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Therfore, the section lift and drag coefficients can be readily obtained:

8.1 Finite Wing: General Spanwise Circulation Distribution

The wing aerodynamic coefficients are obtained by the spanwise integration of section

coefficients
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only the terms where n = k will be leftonly the first term will appear

&

8.1 Finite Wing: General Spanwise Circulation Distribution

δ1 includes the higher order terms for n = 

2, 3, . . . only the odd terms are considered 
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2, 3, . . . only the odd terms are considered 

for a symmetric load distribution

For a given wing aspect ratio,the elliptic wing will have the lowest drag coefficient 

since for a generic wing planform δ1 ≥ 0 and for the elliptic wing δ1 = 0.



Similarly, the lift coefficient for the general spanwise loading can be formulated as:

Assume that the wing is untwisted & therefore α − αL0 = const. We define an equivalen

2D wing that has the same lift coefficient C . 

8.1 Finite Wing: General Spanwise Circulation Distribution

2D wing that has the same lift coefficient CL . 

The difference between these two cases is due to the wake-induced angle of attack

Thus, for the elliptic wing δ2 = 0 and also its lift coefficient is higher than for wings with 

other spanwise load distributions
29

However, elliptic planforms are more expensive to manufacture than, say, a simple

rectangular wing. On the other hand, a rectangular wing generates a lift distribution far

from optimum. The tapered wing can be designed with a taper ratio, that is, tip

chord/root chord = ct/cr such that the lift distribution closely approximates the elliptic

case.

8.1 Finite Wing: Varius Planforms
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Spitfire airplane



8.1 Finite Wing: Varius Planforms
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Induced drag factor δ as a function of taper ratio

8.1 Finite Wing: Varius Planforms
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The spanwise loading of wings can be varied by introducing twist to the wing planform.

8.1 Finite Wing: Twisted Elliptic Wing

Geometric Twist: Spanwise variation of AOA

Aerodynamic Twist: Spanwise variation of the zero-lift angle (different airfoils)
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The governing equation for the coefficients for the circulation distribution (An) for the 

general case that is described using lifting-line theory Eq.(8.44a):

8.1 Finite Wing: Twisted Elliptic Wing

The closed-form solution for a wing with an elliptic planform & arbitrary twist founded 

by Filotas.

Consider an elliptic chord distribution as given in Eq. (8.31)
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Eq. (8.58)

a Fourier series representation coefficients are given by



To find the wing lift coefficient:

8.1 Finite Wing: Twisted Elliptic Wing

Example: Consider a wing with a linear twist

The effect of the twist can be analyzed by taking the variable part of α(y) only, and 

adding the contribution of the constant angle of attack later.
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Using Eq. (8.60) to compute the coefficients An

8.1 Finite Wing: Twisted Elliptic Wing

substituting into Eq. (8.42)

Evaluating the individual 

Coefficients for a wing with
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α = -α0|cos θ|

α = α0|cos θ|



8.1 Finite Wing: Twisted Elliptic Wing

Combining with an additional constant AOA α

- A larger AOA at the tip will increase the load there.

- A larger AOA near the wing root will increase the loading there.
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The most important result of the lifting-line theory is its ability to establish the effect

of wing aspect ratio on the lift slope and induced drag. Some of the more important 

conclusions are:

1. The wing lift slope dCL/dα decreases as wing aspect ratio becomes smaller.

2. The induced drag of a wing increases as wing aspect ratio decreases.

8.1 Finite Wing: Conclusions from Lifting-Line Theory

2. The induced drag of a wing increases as wing aspect ratio decreases.

3. A wing with elliptic loading will have the lowest induced drag and the highest lift, as 

indicated by Eqs. (8.53) and (8.57).

4. This theory also provides valuable information about the wing’s spanwise loading

and about the existence of the trailing vortex wake.

5. The theory is limited to small disturbances and large aspect ratio and, for example, 

Eq. (8.6), which requires that the wake be aligned with the local velocity, was not

addressed at all (because of the small angle of attack assumption).addressed at all (because of the small angle of attack assumption).

6. Using the results of this theory we must remember that the drag of a wing includes

the induced drag portion (predicted by this model) plus the viscous drag, which must 

be taken into account.
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